新闻背景
经过逾6个月的飞行,美国“洞察”号火星探测器终于将在2018年11月26日在火星着陆。然而,它要经历“恐怖的7分钟”,能否成功还是个未知数。 像其它火星着陆器一样,“洞察”号整个任务分为发射、巡航、进入下降和着陆(EDL)、表面操作等四个阶段,其中风险最大的就是进入下降和着陆阶段,不少火星探测器都是在这一阶段阵亡的。
路途漫漫环境险恶
至今,人类已发射了40多个火星探测器,成功率约50%,所以火星被称为“探测器坟场”或“死亡星球”。其主要原因是火星距地球遥远,探测器要飞几亿千米才能到达火星,所以对发射、轨道、控制、通信和电源等不少技术都提出了很高的要求。
例如,运载火箭的运载能力、入轨精度和可靠性是火星探测的重要前提,最好用大推力运载火箭把探测器加速到11.2千米/秒的第二宇宙速度,直接进入地火转移轨道飞往火星,否则需要消耗探测器自身燃料和较多的飞行时间来加速,从而会影响探测器寿命。印度就是由于运载火箭推力小,所以其首个火星探测器多花了很多时间和燃料才抵达火星。2020年,我国将用长征5号新一代大型运载火箭发射首个火星探测器。
通信问题也不是易事。从地球发送到火星的无线电信号延时很长,单程需要20分钟左右,因此火星探测器需有较强的自主控制能力;另外,由于信号的强度与距离的平方成反比,而火星距地球太遥远,所以它需要装有高增益、高可靠通信设备,以及必须拥有天线直径很大的地面深空测控网。天线的直径和探测距离成正比,增大天线口径可以增加探测距离。即使这样,还是有不少火星探测器因通信故障而失落在太空。例如,1992年9月25日发射的美国“火星观测者”轨道器,它在1993年8月21日即将进入火星轨道之前失去通信联系。
由于路途漫漫,所以火星探测器在飞往火星的途中要进行比月球探测器次数更多、更精确的轨道修正,才能准确地飞到火星。如果火星探测器在地火转移轨道近地点有1米/秒的速度误差或1千米的高度误差,飞到火星附近时都将产生10万千米的位置误差。轨道修正是通过分布在地球表面的深空测控网实现的。该网常由3个在全球彼此相隔120°的地面通信站组成,天线直径达64~70米。美国“勇气”号火星车在降落在火星表面前,先后修正了4次航线。
因为火星探测器远离太阳,它所受到的太阳辐射强度大大减弱,所以火星探测器的太阳电池翼性能必须很高。如果使用核电源,则要解决安全性问题。
也要注意太阳风暴的影响。日本首个火星探测器“希望”号原定于2003年12月14日进入火星轨道,但是由于其电路系统在2003年底受太阳风暴的影响而出现故障,结果使变轨发动机无法启动,最终导致探测器不能切入火星轨道而告失败。
火星环境复杂、恶劣也是造成火星探测器经常“阵亡”的主要原因。火星大气密度只有地球大气密度的1%,因而辐射严重。火星上的沙尘暴也很大,有时是地球上12级台风的6倍,时间可达半年,今年美国“机遇”号火星车就是因沙尘暴而停止工作,现在还不知能否可以复活。
着陆火星难上加难
探测器进入火星轨道的难度被比喻为从巴黎打一个高尔夫球,正好落到东京的某个球洞里。这是由于通信延时很长,所有数据都要提前注入。在探测器切入火星轨道过程中,如果切入点离火星过远,则不能被火星的引力捕获而掠过火星;如果切入点离火星太近,则可能坠毁于火星大气层。
如果探测器要在火星表面着陆,其难度就更大了。因为在探测器进入火星大气时离地球很远,遥测和遥控信号比较微弱;另外,当探测器运动到火星背面时,地球上无法准确地确定其轨道参数,这就给再入高度的选择带来困难。由于受通信延时的影响,所以在火星着陆的全过程中,一切都要靠探测器自主进行。
进入火星大气层后,探测器防热措施如何,降落伞、气囊和缓冲火箭等能否按程序工作,都至关重要,必须非常精确,整个过程要经历所谓的“恐怖7分钟”。
所以,探测器在火星着陆的技术十分复杂,每个环节都不能有闪失。许多探测器都因此功亏一篑。例如,1999年9月23日,美国“火星气候”轨道器在即将进入预定轨道前烧毁,原因是在轨道切入操作中,由于英制和公制单位的混淆而造成导航误差,使其飞离火星太近而烧毁。
原定1999年12月3日在火星着陆的美国“火星极区”着陆器也下落不明。它是在即将登陆火星表面时,由于软件错误导致其起减速作用的火箭发动机过早关闭,最终撞毁。
2003年12月,欧洲“猎兔犬2”号着陆器与“火星快车”轨道器分离后,准备在火星表面着陆时失踪了,这是由于“猎兔犬2”号着陆后太阳电池板没有完全展开,所以“猎兔犬2”号因没有电而与外界失联。
2016年10月20日,欧洲“火星生物学-2016”中的“夏帕雷利”进入、降落和着陆演示器在着陆前与地面失去了联系,原因由一个仅一秒的计算失误所致,提前将降落伞与防热罩分离,导致“夏帕雷利”硬着陆而撞毁。
着陆方式各有千秋
目前,探测器在火星软着陆方式主要有三种,每种方案都各有优缺点。
一是气囊弹跳式。这种方式比较简单,成本低,但只能满足重量小的探测器软着陆要求,且着陆精度不高。美国“火星探路者”、“火星漫游者”(“勇气”号和“机遇”号火星车)都采用降落伞+气囊弹跳方式。
二是反推着陆腿式。这种方式复杂一些,成本高,可满足重量较大的探测器软着陆要求,着陆精度较高。美国“海盗”号、“凤凰”号、“洞察”号和欧洲的“猎兔犬2”号、“夏帕雷利”都采用降落伞+缓冲发动机反推+着陆腿方式。
三是空中起重机式。这种方式最为复杂,成本最高,技术最先进,可满足重量更大的探测器软着陆要求,能精确着陆。携带“好奇”号火星车的美国“火星科学实验室”采用降落伞+缓冲发动机反推+空中起重机方式。
至今,所有的火星着陆器全部采用刚性减速器和“盘-缝-带”降落伞的减速方案来完成超声速减速工作。2012年在火星表面实现软着陆的“好奇”号火星车是至今质量最大的火星着陆器,达960千克。“好奇”号已把刚性减速器和“盘-缝-带”降落伞这项减速技术所能承受的重量推到极限,而未来的载人火星任务涉及的重量将达到20吨以上。
在进入火星大气层过程中,由于火星大气的密度只有地球的1%,而载人火星飞船重量又大增,因此现有的3种着陆方式都无法保证大质量航天器安全软着陆。为了完成未来的载人登陆火星任务,美国正在积极研制新的火星着陆装置——“低密度超声速减速器”。当着陆器以大约3.5马赫的速度进入火星大气时,该装置能像夏威夷气鼓鱼一样迅速充气,以增加表面积,进而增加空气阻力,使着陆器的速度减至2马赫。此时,直径33米的巨型超声速环帆降落伞打开,帮助火星着陆器安全着陆。
火星探测前景广
尽管探测火星技术难度很大,但随着技术和经济的发展,现在探测火星的国家越来越多。因为火星是离地球最近的类地行星,具备了生命存在的必要条件,并有可能成为人类未来移民的理想星球。
目前,在火星轨道上工作的探测器有美国的“火星勘测”轨道器、“火星大气与挥发物演变”、2颗“火星立方1号”,欧洲的“火星快车”和“微量气体”轨道器,印度的“曼加里安”;在火星表面工作的有美国“好奇”号火星车,“洞察”号也即将着陆。“洞察”号是第一个探测火星深层的航天器,将通过倾听火星地震和测量它的热量输出来研究火星的内部结构,揭示岩质行星的形成,填补火星地球物理空白,更好地了解其他岩石行星(包括地球)是如何诞生的。
2020年,美国将发射新的火星车。它使用“好奇”号火星车成熟的平台,但配置了更先进的探测仪器,对火星表面进行进一步考察。此后,美国还将实施火星采样返回任务,最终在2035年左右进行首次载人登火星。
2020年,欧俄将联合发射“火星生物学-2020”火星车,用于搜寻生命迹象。它将成为首个能在火星上钻探地下2米深的巡视探测器,采集不受辐射和氧化剂破坏的样品,然后把采集的灰尘样本返回地球进行分析,从而分析火星是否具备维持生命存活的重要元素。
2020年,我国将首次发射第一个火星探测器,率先在世界实现通过一次发射完成“绕、着、巡”三项任务的壮举,获取自主火星探测科学数据,实现深空探测技术的跨越。2028年,我国还将实施火星采样返回任务。
(庞之浩 作者为全国空间探测技术首席科学传播专家)
编辑:米兰
阅读
4160 阅读
4114 阅读
5102 阅读
4872 阅读
4734 阅读
7149 阅读
4547 阅读
4391 阅读
5264 阅读
5369 阅读
5051 阅读
4642 阅读
4157 阅读
4514 阅读
4287 阅读
4688 阅读
4317 阅读
3578 阅读
4378 阅读
4790 阅读
4555 阅读
4342 阅读
4654 阅读
4488 阅读
4112 阅读
4529 阅读
2458 阅读
3470 阅读
3241 阅读
新闻背景
经过逾6个月的飞行,美国“洞察”号火星探测器终于将在2018年11月26日在火星着陆。然而,它要经历“恐怖的7分钟”,能否成功还是个未知数。 像其它火星着陆器一样,“洞察”号整个任务分为发射、巡航、进入下降和着陆(EDL)、表面操作等四个阶段,其中风险最大的就是进入下降和着陆阶段,不少火星探测器都是在这一阶段阵亡的。
路途漫漫环境险恶
至今,人类已发射了40多个火星探测器,成功率约50%,所以火星被称为“探测器坟场”或“死亡星球”。其主要原因是火星距地球遥远,探测器要飞几亿千米才能到达火星,所以对发射、轨道、控制、通信和电源等不少技术都提出了很高的要求。
例如,运载火箭的运载能力、入轨精度和可靠性是火星探测的重要前提,最好用大推力运载火箭把探测器加速到11.2千米/秒的第二宇宙速度,直接进入地火转移轨道飞往火星,否则需要消耗探测器自身燃料和较多的飞行时间来加速,从而会影响探测器寿命。印度就是由于运载火箭推力小,所以其首个火星探测器多花了很多时间和燃料才抵达火星。2020年,我国将用长征5号新一代大型运载火箭发射首个火星探测器。
通信问题也不是易事。从地球发送到火星的无线电信号延时很长,单程需要20分钟左右,因此火星探测器需有较强的自主控制能力;另外,由于信号的强度与距离的平方成反比,而火星距地球太遥远,所以它需要装有高增益、高可靠通信设备,以及必须拥有天线直径很大的地面深空测控网。天线的直径和探测距离成正比,增大天线口径可以增加探测距离。即使这样,还是有不少火星探测器因通信故障而失落在太空。例如,1992年9月25日发射的美国“火星观测者”轨道器,它在1993年8月21日即将进入火星轨道之前失去通信联系。
由于路途漫漫,所以火星探测器在飞往火星的途中要进行比月球探测器次数更多、更精确的轨道修正,才能准确地飞到火星。如果火星探测器在地火转移轨道近地点有1米/秒的速度误差或1千米的高度误差,飞到火星附近时都将产生10万千米的位置误差。轨道修正是通过分布在地球表面的深空测控网实现的。该网常由3个在全球彼此相隔120°的地面通信站组成,天线直径达64~70米。美国“勇气”号火星车在降落在火星表面前,先后修正了4次航线。
因为火星探测器远离太阳,它所受到的太阳辐射强度大大减弱,所以火星探测器的太阳电池翼性能必须很高。如果使用核电源,则要解决安全性问题。
也要注意太阳风暴的影响。日本首个火星探测器“希望”号原定于2003年12月14日进入火星轨道,但是由于其电路系统在2003年底受太阳风暴的影响而出现故障,结果使变轨发动机无法启动,最终导致探测器不能切入火星轨道而告失败。
火星环境复杂、恶劣也是造成火星探测器经常“阵亡”的主要原因。火星大气密度只有地球大气密度的1%,因而辐射严重。火星上的沙尘暴也很大,有时是地球上12级台风的6倍,时间可达半年,今年美国“机遇”号火星车就是因沙尘暴而停止工作,现在还不知能否可以复活。
着陆火星难上加难
探测器进入火星轨道的难度被比喻为从巴黎打一个高尔夫球,正好落到东京的某个球洞里。这是由于通信延时很长,所有数据都要提前注入。在探测器切入火星轨道过程中,如果切入点离火星过远,则不能被火星的引力捕获而掠过火星;如果切入点离火星太近,则可能坠毁于火星大气层。
如果探测器要在火星表面着陆,其难度就更大了。因为在探测器进入火星大气时离地球很远,遥测和遥控信号比较微弱;另外,当探测器运动到火星背面时,地球上无法准确地确定其轨道参数,这就给再入高度的选择带来困难。由于受通信延时的影响,所以在火星着陆的全过程中,一切都要靠探测器自主进行。
进入火星大气层后,探测器防热措施如何,降落伞、气囊和缓冲火箭等能否按程序工作,都至关重要,必须非常精确,整个过程要经历所谓的“恐怖7分钟”。
所以,探测器在火星着陆的技术十分复杂,每个环节都不能有闪失。许多探测器都因此功亏一篑。例如,1999年9月23日,美国“火星气候”轨道器在即将进入预定轨道前烧毁,原因是在轨道切入操作中,由于英制和公制单位的混淆而造成导航误差,使其飞离火星太近而烧毁。
原定1999年12月3日在火星着陆的美国“火星极区”着陆器也下落不明。它是在即将登陆火星表面时,由于软件错误导致其起减速作用的火箭发动机过早关闭,最终撞毁。
2003年12月,欧洲“猎兔犬2”号着陆器与“火星快车”轨道器分离后,准备在火星表面着陆时失踪了,这是由于“猎兔犬2”号着陆后太阳电池板没有完全展开,所以“猎兔犬2”号因没有电而与外界失联。
2016年10月20日,欧洲“火星生物学-2016”中的“夏帕雷利”进入、降落和着陆演示器在着陆前与地面失去了联系,原因由一个仅一秒的计算失误所致,提前将降落伞与防热罩分离,导致“夏帕雷利”硬着陆而撞毁。
着陆方式各有千秋
目前,探测器在火星软着陆方式主要有三种,每种方案都各有优缺点。
一是气囊弹跳式。这种方式比较简单,成本低,但只能满足重量小的探测器软着陆要求,且着陆精度不高。美国“火星探路者”、“火星漫游者”(“勇气”号和“机遇”号火星车)都采用降落伞+气囊弹跳方式。
二是反推着陆腿式。这种方式复杂一些,成本高,可满足重量较大的探测器软着陆要求,着陆精度较高。美国“海盗”号、“凤凰”号、“洞察”号和欧洲的“猎兔犬2”号、“夏帕雷利”都采用降落伞+缓冲发动机反推+着陆腿方式。
三是空中起重机式。这种方式最为复杂,成本最高,技术最先进,可满足重量更大的探测器软着陆要求,能精确着陆。携带“好奇”号火星车的美国“火星科学实验室”采用降落伞+缓冲发动机反推+空中起重机方式。
至今,所有的火星着陆器全部采用刚性减速器和“盘-缝-带”降落伞的减速方案来完成超声速减速工作。2012年在火星表面实现软着陆的“好奇”号火星车是至今质量最大的火星着陆器,达960千克。“好奇”号已把刚性减速器和“盘-缝-带”降落伞这项减速技术所能承受的重量推到极限,而未来的载人火星任务涉及的重量将达到20吨以上。
在进入火星大气层过程中,由于火星大气的密度只有地球的1%,而载人火星飞船重量又大增,因此现有的3种着陆方式都无法保证大质量航天器安全软着陆。为了完成未来的载人登陆火星任务,美国正在积极研制新的火星着陆装置——“低密度超声速减速器”。当着陆器以大约3.5马赫的速度进入火星大气时,该装置能像夏威夷气鼓鱼一样迅速充气,以增加表面积,进而增加空气阻力,使着陆器的速度减至2马赫。此时,直径33米的巨型超声速环帆降落伞打开,帮助火星着陆器安全着陆。
火星探测前景广
尽管探测火星技术难度很大,但随着技术和经济的发展,现在探测火星的国家越来越多。因为火星是离地球最近的类地行星,具备了生命存在的必要条件,并有可能成为人类未来移民的理想星球。
目前,在火星轨道上工作的探测器有美国的“火星勘测”轨道器、“火星大气与挥发物演变”、2颗“火星立方1号”,欧洲的“火星快车”和“微量气体”轨道器,印度的“曼加里安”;在火星表面工作的有美国“好奇”号火星车,“洞察”号也即将着陆。“洞察”号是第一个探测火星深层的航天器,将通过倾听火星地震和测量它的热量输出来研究火星的内部结构,揭示岩质行星的形成,填补火星地球物理空白,更好地了解其他岩石行星(包括地球)是如何诞生的。
2020年,美国将发射新的火星车。它使用“好奇”号火星车成熟的平台,但配置了更先进的探测仪器,对火星表面进行进一步考察。此后,美国还将实施火星采样返回任务,最终在2035年左右进行首次载人登火星。
2020年,欧俄将联合发射“火星生物学-2020”火星车,用于搜寻生命迹象。它将成为首个能在火星上钻探地下2米深的巡视探测器,采集不受辐射和氧化剂破坏的样品,然后把采集的灰尘样本返回地球进行分析,从而分析火星是否具备维持生命存活的重要元素。
2020年,我国将首次发射第一个火星探测器,率先在世界实现通过一次发射完成“绕、着、巡”三项任务的壮举,获取自主火星探测科学数据,实现深空探测技术的跨越。2028年,我国还将实施火星采样返回任务。
(庞之浩 作者为全国空间探测技术首席科学传播专家)
编辑:米兰